LogoLogo
API ReferenceGitHubSlackService StatusLogin
v3.9.16
v3.9.16
  • 🏠Deep Lake Docs
  • List of ML Datasets
  • 🏗️SETUP
    • Installation
    • User Authentication
      • Workload Identities (Azure Only)
    • Storage and Credentials
      • Storage Options
      • Setting up Deep Lake in Your Cloud
        • Microsoft Azure
          • Configure Azure SSO on Activeloop
          • Provisioning Federated Credentials
          • Enabling CORS
        • Google Cloud
          • Provisioning Federated Credentials
          • Enabling CORS
        • Amazon Web Services
          • Provisioning Role-Based Access
          • Enabling CORS
  • 📚Examples
    • Deep Learning
      • Deep Learning Quickstart
      • Deep Learning Guide
        • Step 1: Hello World
        • Step 2: Creating Deep Lake Datasets
        • Step 3: Understanding Compression
        • Step 4: Accessing and Updating Data
        • Step 5: Visualizing Datasets
        • Step 6: Using Activeloop Storage
        • Step 7: Connecting Deep Lake Datasets to ML Frameworks
        • Step 8: Parallel Computing
        • Step 9: Dataset Version Control
        • Step 10: Dataset Filtering
      • Deep Learning Tutorials
        • Creating Datasets
          • Creating Complex Datasets
          • Creating Object Detection Datasets
          • Creating Time-Series Datasets
          • Creating Datasets with Sequences
          • Creating Video Datasets
        • Training Models
          • Splitting Datasets for Training
          • Training an Image Classification Model in PyTorch
          • Training Models Using MMDetection
          • Training Models Using PyTorch Lightning
          • Training on AWS SageMaker
          • Training an Object Detection and Segmentation Model in PyTorch
        • Updating Datasets
        • Data Processing Using Parallel Computing
      • Deep Learning Playbooks
        • Querying, Training and Editing Datasets with Data Lineage
        • Evaluating Model Performance
        • Training Reproducibility Using Deep Lake and Weights & Biases
        • Working with Videos
      • Deep Lake Dataloaders
      • API Summary
    • RAG
      • RAG Quickstart
      • RAG Tutorials
        • Vector Store Basics
        • Vector Search Options
          • LangChain API
          • Deep Lake Vector Store API
          • Managed Database REST API
        • Customizing Your Vector Store
        • Image Similarity Search
        • Improving Search Accuracy using Deep Memory
      • LangChain Integration
      • LlamaIndex Integration
      • Managed Tensor Database
        • REST API
        • Migrating Datasets to the Tensor Database
      • Deep Memory
        • How it Works
    • Tensor Query Language (TQL)
      • TQL Syntax
      • Index for ANN Search
        • Caching and Optimization
      • Sampling Datasets
  • 🔬Technical Details
    • Best Practices
      • Creating Datasets at Scale
      • Training Models at Scale
      • Storage Synchronization and "with" Context
      • Restoring Corrupted Datasets
      • Concurrent Writes
        • Concurrency Using Zookeeper Locks
    • Deep Lake Data Format
      • Tensor Relationships
      • Version Control and Querying
    • Dataset Visualization
      • Visualizer Integration
    • Shuffling in Dataloaders
    • How to Contribute
Powered by GitBook
On this page
  • Understanding the Interaction Between Deep Lake's Versions, Queries, and Dataset Views.
  • Version Control HEAD Commit

Was this helpful?

Edit on GitHub
  1. Technical Details
  2. Deep Lake Data Format

Version Control and Querying

Understanding Deep Lake's Version control and Querying Layout

PreviousTensor RelationshipsNextDataset Visualization

Was this helpful?

Understanding the Interaction Between Deep Lake's Versions, Queries, and Dataset Views.

Version control is the core of the Deep Lake data format, and it interacts with queries and view as follows:

  • Datasets have commits and branches, and they can be traversed or merged using Deep Lake's Python API.

  • Queries are applied on top of commits, and in order to save a query result as a view, the dataset cannot be in an uncommitted state (no changes were performed since the prior commit).

  • Each saved view is associated with a particular commit, and the view itself contains information on which dataset indices satisfied the query condition.

This logical approach was chosen in order to preserve data lineage. Otherwise, it would be possible to change data on which a query was executed, thereby potentially invalidating the saved view, since the indices that satisfied the query condition may no longer be correct after the dataset was changed.

Please check out our to learn how to use the Python API to , .

An example workflow using version control and queries is shown below.

Version Control HEAD Commit

Unlike Git, Deep Lake's dataset version control does not have a local staging area because all dataset updates are immediately synced with the permanent storage location (cloud or local). Therefore, any changes to a dataset are automatically stored in a HEAD commit on the current branch. This means that the uncommitted changes do not appear on other branches, and uncommitted changes are visible to all users.

🔬
Getting Stated Guide
version your data
run queries, and save views