LogoLogo
API ReferenceGitHubSlackService StatusLogin
v3.9.16
v3.9.16
  • 🏠Deep Lake Docs
  • List of ML Datasets
  • 🏗️SETUP
    • Installation
    • User Authentication
      • Workload Identities (Azure Only)
    • Storage and Credentials
      • Storage Options
      • Setting up Deep Lake in Your Cloud
        • Microsoft Azure
          • Configure Azure SSO on Activeloop
          • Provisioning Federated Credentials
          • Enabling CORS
        • Google Cloud
          • Provisioning Federated Credentials
          • Enabling CORS
        • Amazon Web Services
          • Provisioning Role-Based Access
          • Enabling CORS
  • 📚Examples
    • Deep Learning
      • Deep Learning Quickstart
      • Deep Learning Guide
        • Step 1: Hello World
        • Step 2: Creating Deep Lake Datasets
        • Step 3: Understanding Compression
        • Step 4: Accessing and Updating Data
        • Step 5: Visualizing Datasets
        • Step 6: Using Activeloop Storage
        • Step 7: Connecting Deep Lake Datasets to ML Frameworks
        • Step 8: Parallel Computing
        • Step 9: Dataset Version Control
        • Step 10: Dataset Filtering
      • Deep Learning Tutorials
        • Creating Datasets
          • Creating Complex Datasets
          • Creating Object Detection Datasets
          • Creating Time-Series Datasets
          • Creating Datasets with Sequences
          • Creating Video Datasets
        • Training Models
          • Splitting Datasets for Training
          • Training an Image Classification Model in PyTorch
          • Training Models Using MMDetection
          • Training Models Using PyTorch Lightning
          • Training on AWS SageMaker
          • Training an Object Detection and Segmentation Model in PyTorch
        • Updating Datasets
        • Data Processing Using Parallel Computing
      • Deep Learning Playbooks
        • Querying, Training and Editing Datasets with Data Lineage
        • Evaluating Model Performance
        • Training Reproducibility Using Deep Lake and Weights & Biases
        • Working with Videos
      • Deep Lake Dataloaders
      • API Summary
    • RAG
      • RAG Quickstart
      • RAG Tutorials
        • Vector Store Basics
        • Vector Search Options
          • LangChain API
          • Deep Lake Vector Store API
          • Managed Database REST API
        • Customizing Your Vector Store
        • Image Similarity Search
        • Improving Search Accuracy using Deep Memory
      • LangChain Integration
      • LlamaIndex Integration
      • Managed Tensor Database
        • REST API
        • Migrating Datasets to the Tensor Database
      • Deep Memory
        • How it Works
    • Tensor Query Language (TQL)
      • TQL Syntax
      • Index for ANN Search
        • Caching and Optimization
      • Sampling Datasets
  • 🔬Technical Details
    • Best Practices
      • Creating Datasets at Scale
      • Training Models at Scale
      • Storage Synchronization and "with" Context
      • Restoring Corrupted Datasets
      • Concurrent Writes
        • Concurrency Using Zookeeper Locks
    • Deep Lake Data Format
      • Tensor Relationships
      • Version Control and Querying
    • Dataset Visualization
      • Visualizer Integration
    • Shuffling in Dataloaders
    • How to Contribute
Powered by GitBook
On this page
  • How to use Deep Lake's Dataloaders for Training Models
  • Pure-Python Dataloader
  • C++ Dataloader
  • Further Information

Was this helpful?

Edit on GitHub
  1. Examples
  2. Deep Learning

Deep Lake Dataloaders

Overview of Deep Lake's dataloader built and optimized in C++

PreviousWorking with VideosNextAPI Summary

Was this helpful?

How to use Deep Lake's Dataloaders for Training Models

Deep Lake offers an optimized dataloader implementation built in C++, , and it supports distributed training. The C++ and Python dataloaders can be used interchangeably, and their syntax varies as shown below.

The Deep Lake Compute Engine is only accessible to registered and authenticated users, and it applies usage restrictions based on your Deep Lake Plan.

Pure-Python Dataloader

train_loader = ds_train.pytorch(num_workers = 8,
                                transform = transform, 
                                batch_size = 32,
                                tensors=['images', 'labels'],
                                shuffle = True)

C++ Dataloader

The C++ dataloader is only accessible to registered and authenticated users.

The Deep Lake query engine is only accessible to registered and authenticated users, and it applies usage restrictions based on your Deep Lake Plan.

PyTorch (returns PyTorch Dataloader)

train_loader = ds.dataloader()\
                 .transform(transform)\
                 .batch(32)\
                 .shuffle(True)\
                 .offset(10000)\
                 .pytorch(tensors=['images', 'labels'], num_workers = 8)

TensorFlow

train_loader = ds.dataloader()\
                 .transform(transform)\
                 .batch(32)\
                 .shuffle(True)\
                 .offset(10000)\
                 .tensorflow(tensors=['images', 'labels'], num_workers = 8)

Further Information

📚
which is 1.5-3X faster than the pure-python implementation
Training Models
Training Reproducibility Using Deep Lake and Weights & Biases