LogoLogo
API ReferenceGitHubSlackService StatusLogin
v3.4.0
v3.4.0
  • Deep Lake Docs
  • List of ML Datasets
  • Quickstart
  • Dataset Visualization
  • Storage & Credentials
    • Storage Options
    • User Authentication
    • Managed Credentials
      • Enabling CORS
      • Provisioning Role-Based Access
  • API Reference
  • Enterprise Features
    • Querying Datasets
      • Sampling Datasets
    • Performant Dataloader
  • EXAMPLE CODE
  • Getting Started
    • Step 1: Hello World
    • Step 2: Creating Deep Lake Datasets
    • Step 3: Understanding Compression
    • Step 4: Accessing and Updating Data
    • Step 5: Visualizing Datasets
    • Step 6: Using Activeloop Storage
    • Step 7: Connecting Deep Lake Datasets to ML Frameworks
    • Step 8: Parallel Computing
    • Step 9: Dataset Version Control
    • Step 10: Dataset Filtering
  • Tutorials (w Colab)
    • Deep Lake Vector Store in LangChain
    • Creating Datasets
      • Creating Complex Datasets
      • Creating Object Detection Datasets
      • Creating Time-Series Datasets
      • Creating Datasets with Sequences
      • Creating Video Datasets
    • Training Models
      • Training an Image Classification Model in PyTorch
      • Training Models Using MMDetection
      • Training Models Using PyTorch Lightning
      • Training on AWS SageMaker
      • Training an Object Detection and Segmentation Model in PyTorch
    • Updating Datasets
    • Data Processing Using Parallel Computing
  • Playbooks
    • Querying, Training and Editing Datasets with Data Lineage
    • Evaluating Model Performance
    • Training Reproducibility Using Deep Lake and Weights & Biases
    • Working with Videos
  • API Summary
  • Technical Details
    • Best Practices
      • Creating Datasets at Scale
      • Training Models at Scale
      • Storage Synchronization and "with" Context
      • Restoring Corrupted Datasets
    • Data Layout
    • Version Control and Querying
    • Tensor Relationships
    • Visualizer Integration
    • Shuffling in dataloaders
    • How to Contribute
Powered by GitBook
On this page
  • How to make updates to Deep Lake datasets
  • Create a Representative Deep Lake Dataset
  • Add Data to a New Tensor
  • Update Existing Data
  • Delete Samples

Was this helpful?

  1. Tutorials (w Colab)

Updating Datasets

Updating Deep Lake datasets

PreviousTraining an Object Detection and Segmentation Model in PyTorchNextData Processing Using Parallel Computing

Last updated 2 years ago

Was this helpful?

How to make updates to Deep Lake datasets

This tutorial is also available as a Colab Notebook

After creating a Deep Lake dataset, you may need to edit it by adding, deleting, and modifying the data. In this tutorial, we show best practices for updating datasets.

Create a Representative Deep Lake Dataset

First, let's download and unzip representative source data and create a Deep Lake dataset for this tutorial:

This dataset includes segmentation and object detection of vehicle damage, but for this tutorial, we will only upload the images and labels (damage location)

import deeplake
import pandas as pd
import os
from PIL import Image

images_directory = '/damaged_cars_tutorial' # Path to the COCO images directory
annotation_file = '/damaged_cars_tutorial/COCO_mul_val_annos.json' # Path to the COCO annotations file
deeplake_path = '/damaged_cars_dataset' # Path to the Deep Lake dataset

ds = deeplake.ingest_coco(images_directory, annotation_file, deeplake_path, 
                          key_to_tensor_mapping={'category_id': 'labels'}, # Rename category_id to labels
                          ignore_keys=['area', 'image_id', 'id', 'segmentation', 'image_id', 'bbox', 'iscrowd'])
```

ds.summary() shows the dataset has two tensors with 11 samples:

 tensor      htype            shape          dtype  compression
 -------    -------          -------        -------  ------- 
 images      image     (11, 1024, 1024, 3)   uint8    jpeg   
 labels   class_label       (11, 2:7)       uint32    None  

We can explore the damage in the first sample using ds.labels[0].data(), which prints:

{'value': array([0, 1, 2], dtype=uint32),
 'text': ['rear_bumper', 'door', 'headlamp']}

Add Data to a New Tensor

Suppose you have another data source with supplemental data about the color of the vehicles. Let's create a Pandas DataFrame with this data.

color_data = {'filename': ['1.jpg', '9.jpg', '62.jpg', '24.jpg'],
              'color': ['gray', 'blue', 'green', 'gray']}
  
df_color = pd.DataFrame(color_data)

There are two approaches for adding this new data to the Deep Lake dataset:

1. Iterate through the Deep Lake samples and append data

This approach is recommended when most Deep Lake samples are being updated using the supplemental data (dense update).

First, we create a color tensor and iterate through the samples. For each sample, we lookup the color from the df_color DataFrame and append it to the color tensor. If no color exists for a filename, it is appended as None. We use the filename as the key to perform the lookup, which is available in ds.images[index].sample_info dictionary.

with ds:
    ds.create_tensor('color', htype = 'class_label')
    
    # After creating an empty tensor, the length of the dataset is 0
    # Therefore, we iterate over ds.max_view, which is the padded version of the dataset
    for i, sample in enumerate(ds.max_view):
        filename = os.path.basename(sample.images.sample_info['filename'])
        color = df_color[df_color['filename'] == filename]['color'].values
        ds.color.append(None if len(color)==0 else color)

Learn more about dataset lengths and padding here.

Now we see that ds.summary() shows 3 tensors, each with 11 samples (though the color tensor has several empty samples):

 tensor      htype            shape          dtype  compression
 -------    -------          -------        -------  ------- 
 images      image     (11, 1024, 1024, 3)   uint8    jpeg   
 labels   class_label       (11, 2:7)       uint32    None   
  color   class_label       (11, 0:1)       uint32    None  

Iterate through the supplemental data and add data at the corresponding Deep Lake index

This approach is recommended when the data updates are sparse

First, let's create a color2 tensor, and the load all the existing Deep Lake filenames into memory. We then iterate through the supplemental data and find the corresponding Deep Lake index to insert the color information.

with ds:
    ds.create_tensor('color2', htype = 'class_label')

    filenames = [os.path.basename(sample_info['filename']) for sample_info in ds.images.sample_info]

    for fn in df_color['filename'].values:
        index = filenames.index(fn)
        ds.color2[index] = df_color[df_color['filename'] == fn]['color'].values[0]

Now we see that ds.summary() shows 4 tensors, each with 11 samples (though the color and color2 tensors have several empty samples):

 tensor      htype            shape          dtype  compression
 -------    -------          -------        -------  ------- 
 images      image     (10, 1024, 1024, 3)   uint8    jpeg   
 labels   class_label       (10, 2:7)       uint32    None   
  color   class_label       (10, 0:1)       uint32    None   
 color2   class_label       (10, 0:1)       uint32    None   

Update Existing Data

Originally, we did not specify a color for image 3.jpg. Let's find the index for this image, look at it, and add the color manually. We've already loaded the Deep Lake dataset's filenames into memory above, so we can find the index using:

index = filenames.index('3.jpg')

Let's visualize the image using PIL. We could also visualize it using ds.visualize() (must pip install "deeplake[visualizer]") or using the Deep Lake App.

Image.fromarray(ds.images[index].numpy())

Since the image is white, let's update the color using:

ds.color[index] = 'white'

Delete Samples

Rows from a dataset can be deleted using ds.pop(). To delete the row at index 8 we run:

ds.pop(8)

Now we see that ds.summary() shows 10 rows in the dataset (instead of 11):

 tensor      htype            shape          dtype  compression
 -------    -------          -------        -------  ------- 
 images      image     (10, 1024, 1024, 3)   uint8    jpeg   
 labels   class_label       (10, 2:7)       uint32    None   
  color   class_label       (10, 0:1)       uint32    None   
 color2   class_label       (10, 0:1)       uint32    None   

To replace data with empty data without deleting a row, you can run:

ds.color[index] = None

Congrats! You just learned how to make a variety of updates to Deep Lake datasets! 🎉

1MB
damaged_cars_tutorial.zip
archive