LogoLogo
API ReferenceGitHubSlackService StatusLogin
v3.4.0
v3.4.0
  • Deep Lake Docs
  • List of ML Datasets
  • Quickstart
  • Dataset Visualization
  • Storage & Credentials
    • Storage Options
    • User Authentication
    • Managed Credentials
      • Enabling CORS
      • Provisioning Role-Based Access
  • API Reference
  • Enterprise Features
    • Querying Datasets
      • Sampling Datasets
    • Performant Dataloader
  • EXAMPLE CODE
  • Getting Started
    • Step 1: Hello World
    • Step 2: Creating Deep Lake Datasets
    • Step 3: Understanding Compression
    • Step 4: Accessing and Updating Data
    • Step 5: Visualizing Datasets
    • Step 6: Using Activeloop Storage
    • Step 7: Connecting Deep Lake Datasets to ML Frameworks
    • Step 8: Parallel Computing
    • Step 9: Dataset Version Control
    • Step 10: Dataset Filtering
  • Tutorials (w Colab)
    • Deep Lake Vector Store in LangChain
    • Creating Datasets
      • Creating Complex Datasets
      • Creating Object Detection Datasets
      • Creating Time-Series Datasets
      • Creating Datasets with Sequences
      • Creating Video Datasets
    • Training Models
      • Training an Image Classification Model in PyTorch
      • Training Models Using MMDetection
      • Training Models Using PyTorch Lightning
      • Training on AWS SageMaker
      • Training an Object Detection and Segmentation Model in PyTorch
    • Updating Datasets
    • Data Processing Using Parallel Computing
  • Playbooks
    • Querying, Training and Editing Datasets with Data Lineage
    • Evaluating Model Performance
    • Training Reproducibility Using Deep Lake and Weights & Biases
    • Working with Videos
  • API Summary
  • Technical Details
    • Best Practices
      • Creating Datasets at Scale
      • Training Models at Scale
      • Storage Synchronization and "with" Context
      • Restoring Corrupted Datasets
    • Data Layout
    • Version Control and Querying
    • Tensor Relationships
    • Visualizer Integration
    • Shuffling in dataloaders
    • How to Contribute
Powered by GitBook
On this page

Was this helpful?

Tutorials (w Colab)

Common workflows with Deep Lake (includes Colab notebooks)

PreviousStep 10: Dataset FilteringNextDeep Lake Vector Store in LangChain

Last updated 2 years ago

Was this helpful?

List of Activeloop Tutorials

Training Models
Querying Datasets
Deep Lake Vector Store in LangChain
Data Processing Using Parallel Computing
Creating Datasets
Learning how to use Deep Lake without any D'oh's