LogoLogo
API ReferenceGitHubSlackService StatusLogin
v3.4.0
v3.4.0
  • Deep Lake Docs
  • List of ML Datasets
  • Quickstart
  • Dataset Visualization
  • Storage & Credentials
    • Storage Options
    • User Authentication
    • Managed Credentials
      • Enabling CORS
      • Provisioning Role-Based Access
  • API Reference
  • Enterprise Features
    • Querying Datasets
      • Sampling Datasets
    • Performant Dataloader
  • EXAMPLE CODE
  • Getting Started
    • Step 1: Hello World
    • Step 2: Creating Deep Lake Datasets
    • Step 3: Understanding Compression
    • Step 4: Accessing and Updating Data
    • Step 5: Visualizing Datasets
    • Step 6: Using Activeloop Storage
    • Step 7: Connecting Deep Lake Datasets to ML Frameworks
    • Step 8: Parallel Computing
    • Step 9: Dataset Version Control
    • Step 10: Dataset Filtering
  • Tutorials (w Colab)
    • Deep Lake Vector Store in LangChain
    • Creating Datasets
      • Creating Complex Datasets
      • Creating Object Detection Datasets
      • Creating Time-Series Datasets
      • Creating Datasets with Sequences
      • Creating Video Datasets
    • Training Models
      • Training an Image Classification Model in PyTorch
      • Training Models Using MMDetection
      • Training Models Using PyTorch Lightning
      • Training on AWS SageMaker
      • Training an Object Detection and Segmentation Model in PyTorch
    • Updating Datasets
    • Data Processing Using Parallel Computing
  • Playbooks
    • Querying, Training and Editing Datasets with Data Lineage
    • Evaluating Model Performance
    • Training Reproducibility Using Deep Lake and Weights & Biases
    • Working with Videos
  • API Summary
  • Technical Details
    • Best Practices
      • Creating Datasets at Scale
      • Training Models at Scale
      • Storage Synchronization and "with" Context
      • Restoring Corrupted Datasets
    • Data Layout
    • Version Control and Querying
    • Tensor Relationships
    • Visualizer Integration
    • Shuffling in dataloaders
    • How to Contribute
Powered by GitBook
On this page

Was this helpful?

  1. Tutorials (w Colab)

Training Models

Workflows for training models using Deep Lake datasets (includes Colab notebooks)

PreviousCreating Video DatasetsNextTraining an Image Classification Model in PyTorch

Last updated 2 years ago

Was this helpful?

Training an Image Classification Model in PyTorch
Training an Object Detection and Segmentation Model in PyTorch
Training Models Using MMDetection