LangChain API
Vector Search using Deep Lake in LangChain
How to Execute Vector Search Using Deep Lake in LangChain
!pip3 install langchain deeplake openai tiktokenfrom langchain.vectorstores import DeepLake
from langchain.chains import RetrievalQA
from langchain.llms import OpenAIChat
from langchain.embeddings.openai import OpenAIEmbeddings
import os
os.environ['OPENAI_API_KEY'] = <OPENAI_API_KEY>
vector_store_path = 'hub://activeloop/paul_graham_essay'
embedding_function = OpenAIEmbeddings(model = 'text-embedding-ada-002')
# Re-load the vector store
db = DeepLake(dataset_path = vector_store_path,
embedding = embedding_function,
read_only = True)
qa = RetrievalQA.from_chain_type(llm=OpenAIChat(model = 'gpt-3.5-turbo'),
chain_type = 'stuff',
retriever = db.as_retriever())Vector Similarity Search
Vector Search in an LLM Context
Vector Search Using the Managed Tensor Database
Was this helpful?