Low-Level API Summary

Summary of the most important low-level Deep Lake commands.

Deep Lake Low-Level API Basics

Import and Installation

By default, Deep Lake does not install dependencies for audio, video, google-cloud, and other features. Details on installation options are available here.

!pip3 install deeplake

import deeplake

Loading Deep Lake Datasets

Deep Lake datasets can be stored at a variety of storage locations using the appropriate dataset_path parameter below. We support S3, GCS, Activeloop storage, and are constantly adding to the list.

# Load a Deep Lake Dataset
ds = deeplake.load('dataset_path', creds = {'optional'}, token = 'optional')

Creating Deep Lake Datasets

# Create an empty Deep Lake dataset
ds = deeplake.empty('dataset_path', creds = {'optional'}, token = 'optional')

# Create an Deep Lake Dataset with the same tensors as another dataset
ds = deeplake.like(ds_object or 'dataset_path', creds = {'optional'}, token = 'optional')

# Automatically create a Deep Lake Dataset from another data source
ds = deeplake.ingest(source_folder, deeplake_dataset_path, ... 'see API reference for details')
ds = deeplake.ingest_coco(images_folder, 'annotations.json', deeplake_dataset_path, ... 'see API reference for details')
ds = deeplake.ingest_yolo(data_directory, deeplake_dataset_path, class_names_file, ... 'see API reference for details')

Deleting Datasets

Creating Tensors

Creating Tensor Hierarchies

Visualizing and Inspecting Datasets

Appending Data to Datasets

Appending/Updating Data in Individual Tensors

Deleting data

Appending Empty Samples or Skipping Samples

Accessing Tensor Data

Maximizing performance

Make sure to use the with context when making any updates to datasets.

Connecting Deep Lake Datasets to ML Frameworks

Versioning Datasets

Querying Datasets and Saving Dataset Views

A full list of supported queries is shown here.

Adding Tensor and Dataset-Level Metadata

Copying datasets

Advanced

Last updated

Was this helpful?