LangChain API
Search Options for Deep Lake Vector Stores in LangChain
!pip3 install deeplake langchain openai tiktokenVector Search in Python
from langchain.chains import RetrievalQA
from langchain.llms import OpenAIChat
from langchain.embeddings.openai import OpenAIEmbeddings
os.environ['OPENAI_API_KEY'] = <OPENAI_API_KEY>
vector_store_path = 'hub://activeloop/paul_graham_essay'
embedding_function = OpenAIEmbeddings(model='text-embedding-ada-002')
# Re-load the vector store
db = DeepLake(dataset_path = vector_store_path, embedding_function=embedding_function, read_only=True)
qa = RetrievalQA.from_chain_type(llm=OpenAIChat(model='gpt-3.5-turbo'), chain_type='stuff', retriever=db.as_retriever())Vector Similarity Search
Vector Search in an LLM Context
Vector Search Using the Compute Engine on the Client Side in LangChain
Vector Search Using the Managed Tensor Database in LangChain
Last updated
Was this helpful?