LogoLogo
API ReferenceGitHubSlackService StatusLogin
v3.6.1
v3.6.1
  • Deep Lake Docs
  • Vector Store Quickstart
  • Deep Learning Quickstart
  • Storage & Credentials
    • Storage Options
    • User Authentication
    • Storing Deep Lake Data in Your Own Cloud
      • Microsoft Azure
        • Provisioning Federated Credentials
      • Amazon Web Services
        • Provisioning Role-Based Access
        • Enabling CORS
  • List of ML Datasets
  • API Reference
  • 🏢Enterprise Features
    • Compute Engine
      • Tensor Query Language (TQL)
        • TQL Syntax
        • Sampling Datasets
      • Performant Dataloader
    • Tensor Database
      • REST API
      • Migrating Datasets to the Tensor Database
  • 📚EXAMPLE CODE
  • Getting Started
    • Vector Store
      • Step 1: Hello World
      • Step 2: Creating Deep Lake Vector Stores
      • Step 3: Performing Search in the Vector Store
      • Step 4: Customizing Vector Stores
    • Deep Learning
      • Step 1: Hello World
      • Step 2: Creating Deep Lake Datasets
      • Step 3: Understanding Compression
      • Step 4: Accessing and Updating Data
      • Step 5: Visualizing Datasets
      • Step 6: Using Activeloop Storage
      • Step 7: Connecting Deep Lake Datasets to ML Frameworks
      • Step 8: Parallel Computing
      • Step 9: Dataset Version Control
      • Step 10: Dataset Filtering
  • Tutorials (w Colab)
    • Vector Store Tutorials
      • Vector Search Options
        • Deep Lake Vector Store API
        • REST API
        • LangChain API
      • Deep Lake Vector Store in LangChain
    • Creating Datasets
      • Creating Complex Datasets
      • Creating Object Detection Datasets
      • Creating Time-Series Datasets
      • Creating Datasets with Sequences
      • Creating Video Datasets
    • Training Models
      • Training an Image Classification Model in PyTorch
      • Training Models Using MMDetection
      • Training Models Using PyTorch Lightning
      • Training on AWS SageMaker
      • Training an Object Detection and Segmentation Model in PyTorch
    • Updating Datasets
    • Data Processing Using Parallel Computing
  • Playbooks
    • Querying, Training and Editing Datasets with Data Lineage
    • Evaluating Model Performance
    • Training Reproducibility Using Deep Lake and Weights & Biases
    • Working with Videos
  • API Summary
  • 🔬Technical Details
    • Best Practices
      • Creating Datasets at Scale
      • Training Models at Scale
      • Storage Synchronization and "with" Context
      • Restoring Corrupted Datasets
    • Data Layout
    • Version Control and Querying
    • Dataset Visualization
    • Tensor Relationships
    • Visualizer Integration
    • Shuffling in dataloaders
    • How to Contribute
Powered by GitBook
On this page
  • How to use Deep Lake's performant Dataloader built and optimized in C++
  • Pure-Python Dataloader
  • C++ Dataloader

Was this helpful?

  1. Enterprise Features
  2. Compute Engine

Performant Dataloader

How to use Deep Lake's new dataloader built and optimized in C++

How to use Deep Lake's performant Dataloader built and optimized in C++

Deep Lake offers an optimized implementation of its dataloader built in C++, which is 1.5-3X faster than the pure-python implementation, and it supports distributed training. The C++ and Python dataloaders can be used interchangeably, and their syntax varies as shown below.

Pure-Python Dataloader

train_loader = ds_train.pytorch(num_workers = 8,
                                transform = transform, 
                                batch_size = 32,
                                tensors=['images', 'labels'],
                                shuffle = True)

C++ Dataloader

The C++ dataloader is installed using pip install "deeplake[enterprise]". Details on all installation options are available here.

train_loader = ds.dataloader()\
                 .transform(transform)\
                 .batch(32)\
                 .shuffle(True)\
                 .pytorch(tensors=['images', 'labels'], num_workers = 8)
PreviousSampling DatasetsNextTensor Database

Last updated 2 years ago

Was this helpful?

🏢