Training Models Using MMDetection
How to Train Deep Learning models using Deep Lake's integration with MMDetection
How to Train Deep Learning models using Deep Lake and MMDetection
Deep Lake & MMDetection Tutorial: Training Deep Learning models
Integration Interface
import os
from mmcv import Config
import mmcv
from deeplake.integrations import mmdet as mmdet_deeplake
import argparse
def parse_args():
parser = argparse.ArgumentParser(description="Deep Lake Training Using MMDET")
parser.add_argument(
"--cfg_file",
type=str,
required=True,
help="Path for loading the config file",
)
parser.add_argument(
"--validate",
action="store_true",
default=True,
help="Whether to run dataset validation",
)
parser.add_argument(
"--distributed",
action="store_true",
default=False,
help="Whether to run distributed training",
)
parser.add_argument(
"--num_classes",
type=int,
default=None,
help="Number of classes in the model",
)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
# Read the config file
cfg = Config.fromfile(args.cfg_file)
cfg.model.bbox_head.num_classes = args.num_classes
# Build the detector
model = mmdet_deeplake.build_detector(cfg.model)
# Create work_dir
mmcv.mkdir_or_exist(os.path.abspath(cfg.work_dir))
# Run the training
mmdet_deeplake.train_detector(model, cfg, distributed=args.distributed, validate=args.validate)Inputs to train_detector
Modifications to the cfg file
Passing Deep Lake dataset objects to the train_detector (Optional)
train_detector (Optional)What is MMDetection?
MMDetection Features
Custom Object Detection and Segmentation Pipelines
Comprehensive Training & Inference Support
Extensive Model Zoo & Configurations
Primary Components of MMDetection
MMDetection Backbone
MMDetection Head
MMDetection ROI Extractor
Loss
PreviousTraining an Image Classification Model in PyTorchNextTraining Models Using PyTorch Lightning
Last updated
Was this helpful?