Step 4: Accessing Data

Learn how Deep Lake Datasets can be accessed or loaded from a variety of storage locations.

How to Access and Load Datasets with Deep Lake

Loading Datasets

Deep Lake Datasets can be loaded from a variety of storage locations using:

import deeplake

# Local Filepath
ds = deeplake.load('./my_dataset_path') # Similar functionality to deeplake.dataset(path)

# S3
ds = deeplake.load('s3://my_dataset_bucket', creds={...})

# Public Dataset hosted by Activeloop
## Activeloop Storage - See Step 6
ds = deeplake.load('hub://activeloop/public_dataset_name')

# Dataset in another organization on Activeloop Platform
ds = deeplake.load('hub://org_name/dataset_name')

Referencing Tensors

Deep Lake allows you to reference specific tensors using keys or via the "." notation outlined below.

Note: data is still not loaded by these commands.

### NO HIERARCHY ###
ds.images # is equivalent to
ds['images']

ds.labels # is equivalent to
ds['labels']

### WITH HIERARCHY ###
ds.localization.boxes # is equivalent to
ds['localization/boxes']

ds.localization.labels # is equivalent to
ds['localization/labels']

Accessing Data

Data within the tensors is loaded and accessed using the .numpy() , .data() , and .tobytes() commands. When the underlying data can be converted to a numpy array, .data() and .numpy() return equivalent objects.

# Indexing
img = ds.images[0].numpy()              # Fetch the 1st image and return a NumPy array
label = ds.labels[0].numpy(aslist=True) # Fetch the 1st label and store it as a 
                                        # as a list
                                    
# frame = ds.videos[0][4].numpy()   # Fetch the 5th frame in the 1st video 
                                    # and return a NumPy array
                              
text_labels = ds.labels[0].data()['text'] # Fetch the first labels and return them as text

# Slicing
imgs = ds.images[0:100].numpy() # Fetch 100 images and return a NumPy array
                                # The method above produces an exception if 
                                # the images are not all the same size

labels = ds.labels[0:100].numpy(aslist=True) # Fetch 100 labels and store 
                                             # them as a list of NumPy arrays

The .numpy()method will produce an exception if all samples in the requested tensor do not have a uniform shape. If that's the case, running .numpy(aslist=True)solves the problem by returning a list of NumPy arrays, where the indices of the list correspond to different samples.

Last updated

Was this helpful?