Low-Level API Summary
Summary of the most important low-level Deep Lake commands.
Deep Lake Low-Level API Basics
Import and Installation
!pip3 install deeplake
import deeplakeLoading Deep Lake Datasets
# Load a Deep Lake Dataset
ds = deeplake.load('dataset_path', creds = {'optional'}, token = 'optional')Creating Deep Lake Datasets
# Create an empty Deep Lake dataset
ds = deeplake.empty('dataset_path', creds = {'optional'}, token = 'optional')
# Create an Deep Lake Dataset with the same tensors as another dataset
ds = deeplake.like(ds_object or 'dataset_path', creds = {'optional'}, token = 'optional')
# Automatically create a Deep Lake Dataset from another data source
ds = deeplake.ingest(source_folder, deeplake_dataset_path, ... 'see API reference for details')
ds = deeplake.ingest_coco(images_folder, 'annotations.json', deeplake_dataset_path, ... 'see API reference for details')
ds = deeplake.ingest_yolo(data_directory, deeplake_dataset_path, class_names_file, ... 'see API reference for details')Deleting Datasets
Creating Tensors
Creating Tensor Hierarchies
Visualizing and Inspecting Datasets
Appending Data to Datasets
Appending/Updating Data in Individual Tensors
Deleting data
Appending Empty Samples or Skipping Samples
Accessing Tensor Data
Maximizing performance
Connecting Deep Lake Datasets to ML Frameworks
Versioning Datasets
Querying Datasets and Saving Dataset Views
Adding Tensor and Dataset-Level Metadata
Copying datasets
Advanced
Was this helpful?