REST API
Running Vector Search in the Deep Lake Tensor Database using the REST API
How to Run Vector Search in the Deep Lake Tensor Database using the REST API
Performing Vector Search Using the REST API
import requests
import openai
import os
# Tokens should be set in environmental variables.
ACTIVELOOP_TOKEN = os.environ['ACTIVELOOP_TOKEN']
DATASET_PATH = 'hub://activeloop/twitter-algorithm'
ENDPOINT_URL = 'https://app.activeloop.ai/api/query/v1'
SEARCH_TERM = 'What do the trust and safety models do?'
# os.environ['OPENAI_API_KEY'] OPEN AI TOKEN should also exist in env variables
# The headers contains the user token
headers = {
"Authorization": f"Bearer {ACTIVELOOP_TOKEN}",
}
# Embed the search term
embedding = openai.Embedding.create(input=SEARCH_TERM, model="text-embedding-ada-002")["data"][0]["embedding"]
# Format the embedding array or list as a string, so it can be passed in the REST API request.
embedding_string = ",".join([str(item) for item in embedding])
# Create the query using TQL
query = f"select * from (select text, cosine_similarity(embedding, ARRAY[{embedding_string}]) as score from \"{dataset_path}\") order by score desc limit 5"
# Submit the request
response = requests.post(ENDPOINT_URL, json={"query": query}, headers=headers)
data = response.json()
print(data)Last updated
Was this helpful?